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Note on Polarization Effects in Compton Scattering
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A derivation of the probability of Compton scattering for an arbitrary initial and final

photon polarization is sketched. The result is applied to the case of two successive Compton
scatterings, and some possibilities of experimental verification are discussed. A remark is made
on a simplification of the calculations of Compton scattering when it is used to analyze the
polarization of annihilation quanta.

HE aim of this note is to treat the Compton
eA'ect for polarized light and make two

applications of the result. Although Nishina has
already dealt with this problem' it is convenient
to sketch in Section I another derivation which
puts the result in a form more suitable for the
present applications. ' In Section II the result of
Section I is used to obtain the azimuthal vari-
ation in intensity of initially unpolarized light
which has undergone two Compton scatterings.
The result has already been obtained by Nishina
for the case of right angle scattering, ' but to get
the maximum variation intensity, as is desirable
experimentally, one must go to angles other
than ninety degrees. In Section III the result of
Section I is used to show how a suitable choice
of coordinates permits one to deduce directly from
the Klein-Nishina formula the result of Pryce and
Nard' for the coincidence rate in an experiment
on the polarization of annihilation quanta.

I. DERIVATION OF THE TRANSFORMATION
MATRIX

Q'e wish to calculate the differential cross
section for scattering of a photon of momentum

kp with an arbitrary initial polarization state to
a final momentum k and an arbitrary final

polarization state. To specify the initial and
final polarization states we use statistica1
matrices U and S'respectively. ' U and W'have
two rows and columns labeled by two indepen-
dent polarization states. The diR'erential cross

' Y. Nishina, Zeits, f. Physik. 52, 869 (1929).
'The present derivation runs parallel to that of 9,".

Heitler Quantum Theory of Radiation (Oxford University
Press, London, 1936), pp. 146—60 for the Klein-Nishina
formula. Heitler's book will be referred to hereafter as QTR.' Reference (1) page 876.

4 M. H. Pryce and J. C. Ward, Nature 160, 435 {1947).' For the use of a statistical matrix to describe a state
see, for example, Kemble Principles of Quantuni Mechanics
(McGraw-Hill Book Company, Inc. , New York, 1937),
p. 434.

section is of the form
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(Equation (18) has been averaged over the
initial and summed over the final spin states of
the electron, the possibility of complex polariza-
tion vectors is not excluded. ) This expression for
the differential scattering cross sections may be
rewritten in the form
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where the matrix 5 is defined by the equation
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To identify the matrix elements of S, write
Eq. (18) p. 149 of QTR for the scattering of an
initial photon specified by the polarization vector
P~=& pc~a~ to a final state specified by the polari-
zation vector Q,=~ pd, g,

dp )kq'E—=e'( —
)
—Q„Av p

dQ E kpi p
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The evaluation of S~~,& can be carried out by
the methods described in QTR. The details will
not be reproduced here. The result is

FIG. &. Polarization vectors R1 and s~ for incoming
photon kp, and (& and (p for scattered photon k. (1 R8
and k lie in a plane perpendicular to the plane which
contains (p, sp and kp.

The case considered here is that in which the
initial and 6nal states are pure states. They have
the statistical matrices
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A useful basis for the polarization states of
initial and scattered photon is that of Fig. 1.
The unit vectors are chosen so that

respectively. U and 8' are normalized to unit
trace:

St' SP (I ' (2 08
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In the more general case of mixed states it will

be impossible to decompose the elements of the
statistical matrices U and S' into simple
products. However, the principle of super position
insures that the matrix S itself will remain
unaltered in this situation.

and so that (t lies in the plane of et and k, while

(p lies in the plane of kp and ep. As a result
st (p=o, but sp (t will be zero only when k,
kp and et lie in the same plane. If the symbol II

be used as equivalent to the subscript 1 and the
symbol J as equivalent to the subscript 2, then
S takes the following form
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It will be noted that the four matrix elements in the upper lefthand corner are just four cases of
the Klein-Nishina formula, apart from a proportionality factor.

~Vhen the incident photon is unpolarized the scattering probability is determined by the sum

+, 8t 2 +WE +8888I, 8t
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%hen the polarization of the scattered photon is to be averaged over, the scattering probability is
determined by the sum

Sl, =-,' P, Sl,„.
The two sums just defined have the form
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When axes are chosen so that kp, k and a& lie
in the same plane, 0) (1——0. Then all three
matrices (6), (7), and (8) take on an especially
simple form. jn particular S, „& and S~„, are
diagonal. This circumstance finds application in
Section III. It could be proved directly from the
symmetry of the problem under reHection in the
plane of kp, k and ~l..

II. THEORY OF DOUBLE COMPTON SCAT-
TERING

In the process to be considered, a photon of
momentum kp undergoes Compton scattering;
the resultant scattered photon of momentum k~

is again scattered to produce a final scattered
photon of momentum k2, which is counted. The
relative number of counts is to be determined as
a function of the azimuth of k2 around the axis of
kg.

If the statistical matrix of polarization of kp

is U;;"' before the first scattering, the statistical
matrix of k& will be proportional to

Pk (1) —Q . . U . .(0)S(1) . . (9)

1 —(02 (2)' = 1—
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=0
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so that we have from section one,

2 2 kl S ''', klS kl. 4L701712 701 sin tt2
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k$ kp kQ k]
Y01 + and Y12 +

kp kg kg k2

For scatterers consisting of single electrons
separated by the distance R, the number of
photons k~ going into the solid angle d02 per

statistical matrix U&" is one-half the unit matrix.
We take a~ in the plane of kp and k~. The matrix
S takes a very simple form, for in this coordinate
system,

1 —(22 (,)-' —(2( ())2=sin2(tk coskyk ——sin'8„

The second scattering will produce a statistical
matrix for k2 proportional to

Qkl &kl")S")k). ..
(see Fig. 2).

Ke consider the case that the original photons
have random polarization. Thus the original

FIG. 2. Momentum vectors for the two successive Compton
scat terings.
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TABLE I: Optimum ratio of maximum to minimum
number of counts for photons initially unpolarized but
twice Compton scattered. The azimuth of the second
counter is varied while the angles of scattering 81 and 8~
are held fixed at values chosen to give the largest N max/
N min.

Ko(Mev)

0.5
1.0
5.0

~85o
~83o
~80'

(1V max/N min} max

3.85
2.14
1.17

second is'

X4L|01+12 rol sin ~2 Y12 sin'ei

+2 sin'8, sin'82 cos'gmjdQ„(1 0)

where I is the current of incident photons (num-
ber per cm' per sec.). For 6xed angles of scat-
tering, 81 and 82, N varies from a maximum at
&2 ——0 (then km is in the plane of ko and ka) to a
minimum at $2 ——s./2. The ratio %max/%min is

|t 01+12 +01 Sin ~2 +12»n'~1+»in'~»in'~2
. (11)

+01%12 701 sin'02 +12»n'~»

'This result can be obtained directly from the Klein-
Nishina formula, once it is known that after the first
scattering photons polarized parallel and perpendicular to
the plane of scattering are incoherent.

The maximum of this ratio as a function of 81

and 82 is a monotonically decreasing function of
energy which is only about 1.04 at k0=17 Mev,
Although an experiment to test (10) at 17 Mev
appears uninteresting because of the smallness of
the efI'ect, the data of Table I have been com-

puted in the hope that a test may be possible at
lower energies.

Unfortunately, the small absolute number of
counts is expected to make the experimental
test quite difFicult e.g. , at k0= 1 Mev with R =10
cm and scatterers 1 cm on a side and containing
10" electrons, only ~1 in 10' of' the photons
striking the first scatterer will be twice scattered
into unit solid angle about the direction which

gives the maximum number of counts. Possibly,
some geometrical arrangement or focussing
device could be used to increase the absolute
intensity.

III. REMARKS ON AN EXPEMMENT ON THE
POLARIZATION OF ANNIHILATION QUANTA

The use of Compton scattering as an analyser
of the polarization of annihilation photons was
originally suggested by Wheeler~ and has been
investigated by numerous physicists. ' Here we
only wish to show under what conditions it is
possible to neglect interference between the
probability amplitudes of the photons. '

In the suggested experiment slow positons are
allowed to annihilate, acting as a source of pairs
of annihilation quanta traveling in (nearly)
opposite directions. (See Fig. 3.) After having
gone through a scattering block, each photon (or
a negaton which it has knocked on) is given a
chance to trip a counter. Coincidences are
measured as a function of relative azimuth

$1—42
The following simple argument shows that the

interference of the photon amp1itudes can be
quite essential. For, neglecting interference we
might reason (incorrectly) as follows: Calculate
the probabilities that photons (1) and (2) are
right and right, left and left, right and left, and
left and left circularly polarized respectively.
Then, multiply each of these probabilities by the
probability that, given that state, a coincidence
should result when the counters are at a given
relative azimuth &1—p2. Then, sum over the
four states. Now, for circularly polarized photons
the probability of Compton scattering is inde-
pendent of azimuth. Consequently the sum
(which is proportional to the number of coin-
cidences) should be independent of azimuth.
This result is known to be wrong. '

A virtue of the general formalism developed
in Section I is that one can see when the neglect
of interference is justified. ' The probability of a
coincidence is proportional to

~1 1' 2 2' 8~3' 4=4' ~ 12 1'"'~& 11', 88'~& 22', 44'~&(1) &(2)

~ J. A. Wheeler, Annals N. Y. Acad. Sci. 48, 219 (1946).
See reference 4. Snyder, Pasternack and Ffornbostel,

Phys Rev. 0'3, 440 (1948). E. Bleuler and D. Ter Haar,
Science 108, 10 (1948). R. P. Feynman, unpublished. I am
indebted to Professor Feynman for the opportunity to
read his elegant treatment of two quantum annihilation.
His method suggested the use of the statistical matrix in
the present work.

9 In paragraph 2 of their paper, Snyder, Hornbostel and
Pasternack give a very simple justification of the neglect
of interference for the particular bases of polarization
vectors below.
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where Ui2, ~ 2 is the statistical matrix of photons
(1) and (2), and 5")22,33 is the transformation
matrix from the statistical matrix of (1) to (3),
S&"g~, 44 the transformation matrix from the
statistical matrix of (2) to that of (4).

For simplicity, consider the case in which the
position and negaton annihilate at zero velocity.
Then to conserve angular momentum the resul-
tant photons must be in a state of zero angular
momentum, for the following reason: From the
polarization states of the two photons one can
make up four polarization states of the combined
system of which three have angular momentum
2 and the fourth angular momentum 0. Now a
megaton and positon at rest have at most total
angular momentum 1. Consequently, the resul-
tant annihilation photons must be a pure state
of angular momentum 0. (In passing we note
that this is in agreement with the standard
result that annihilation is forbidden in first
approximation for a slow negaton-positon pair
in a triplet spin state )As .a result the matrix U
takes a simple form. Using the basis for polariza-
tion vectors of figure one, we find

C,OUNT COURTER

where N —=number of annihilations per second
which result in photons striking scatterers, X,
=—number of electrons per unit volume in scat-
terer i, t;=—thickness of scatterer i, dQ;=—solid
angle of counter ati,

( k kp)
&, =—

I

—+—I,

4'Ioreover, when the coordinate system is
chosen so that one of the counters is in the plane
determined by a& and the momentum of an
annihilation quantum, then the ofF-diagonal
elements of either S('~ or S& & vanish so that

«=2(ki), ")~32., ")+~»,")~«i, "')

p
PHOTQN PHOTON'

FIG. 3, Geometry of experiment on the polarization of
annihilation quanta.

Thus
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The coincidence rate is given by the expression:
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Thus, the coincidence rate can be written
down immediately from the diagonal elements of
S„, or, equivalently, from the Klein-Nishina
formula. (This simplification also extends to the
case in which the negaton-position pair anni-
hilates with velocity greater than zero, provided
the annihilation is considered in the frame in
which the pair has zero total momentum. " Jn
the general case of arbitrary U;;, A, & and arbitrary
basis for the polarization vectors one can deter-
mine from Eq. (12), whether the neglect of inter-
ference of the photon amplitudes is permissible
in any given case. ) Apart from effects of finite
geometry, the expression agrees in its angular
dependence with the result of the above authors.

I wish to thank Dr. A. Pais, Professor J. A.
wheeler, and Professor E. P. signer for helpful
discussion

"The U for this case has been calculated by Feynman
in the unpublished manuscript mentioned in reference 4.


